skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Niavol, Somayeh Saadat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While electrical poling of organic ferroelectrics has been shown to improve device properties, there are challenges in visualizing accompanying structural changes. We observe poling induced changes in ferroelectric domains by applying differential phase contrast (DPC) imaging in the scanning transmission electron microscope, a method that has been used to observe spatial distributions of electromagnetic fields at the atomic scale. In this work, we obtain DPC images from unpoled and electrically poled polyvinylidene fluoride trifluorethylene films and compare their performance in polymer thin film transistors. The vertically poled films show uniform domains throughout the bulk compared to the unpoled film with a significantly higher magnitude of the overall polarization. Thin film transistors comprising a donor–acceptor copolymer as the active semiconductor layer show improved performance with the vertically poled ferroelectric dielectric film compared with the unpoled ferroelectric dielectric film. A poling field of 80–100 MV/m for the dielectric layer yields the best performing transistors; higher than 100 MV/m is seen to degrade the transistor performance. The results are consistent with a reduction in deleterious charge carrier scattering from ferroelectric domain boundaries or interfacial dipoles arising from electrical poling. 
    more » « less